Tetrahedron Letters No.21, pp. 1369-1374, 1964. Pergamon Press Ltd. Printed in Great Britain.

THE CONSTITUTION OF THE GRIGNARD REAGENT Raymond E. Dessy, S.E.I. Green and Rudolf M. Salinger Department of Chemistry, University of Cincinnati, Cincinnati, Ohio (Received 2 April 1964)

During the past year the sixty year old problem involving the structure of the ethereal Grignard reagent, a vexing controversy which was thought to have been solved by tracer studies in 1956, reopened as an apparently insolvable and irreconcilable dichotomy. The tracer results ¹ involving the observation that mixtures of Et₂ Mg and Mg^{*}Br₂ in ether led to little exchange of Mg between the two species, and kinetic and electrochemical data suggesting that these mixtures contained the same species as that produced by EtBr and Mg in ether ² supported a modified Schlenk equilibrium

 $R_2 Mg + Mg X_2 \approx R_2 Mg \cdot Mg X_2 \qquad (1)$

This formulation agreed, or at least was compatible with numerous kinetic findings ³,⁴, product stereochemistry and

² R. E. Dessy, <u>J. Org. Chem.</u>, <u>25</u>, 2260 (1960).

⁴ M. Anteunis, <u>J. Org. Chem.</u>, <u>26</u>, 4214 (1961); <u>27</u>, 596 (1962).

1369

¹ R. E. Dessy, G. S. Handler, J. H. Wotiz and C. A. Hollingsworth, <u>J. Am. Chem. Soc.</u>, <u>79</u>, 3476 (1957); R. E. Dessy and G. S. Handler, <u>ibid</u>. <u>80</u>, 5824 (1958).

³ N. M. Bikales and E. I. Becker, <u>Chem. & Ind.</u>, 1831 (1963), S. J. Storfer and E. I. Becker, <u>J. Org. Chem.</u>, <u>27</u>, 1869 (1962).

mechanistic observations 5, 6, particularly those indicating effective utilization of only one alkyl group per ($R_2 Mg_2 X_2$), and apparent differences in product distribution from utilization of the first 50% of available alkyl groups as compared to the second half. The $R_2 Mg \cdot Mg X_2$ formulation was thus extended to other R groups, and to other solvent systems, such as FHF.

Facts which eventually lead to conflict with this are associated with the "monomeric"⁷ molecular weights exhibited in dilute ethereal solutions by many Grignard reagents as recently reported from two separate laboratories ^{8,9}, and "monomeric" molecular weights exhibited over a wide range of concentrations in THF; more concentrated ethereal solutions tend toward the "dimeric". In addition, two studies on crystalline organomagnesium compounds suggest RMgX units ^{9,10}, one of these entailing an X-Ray analysis of ØMgBr•2Et₂O.

- ⁵ J. Miller, G. Gregorian and H. S. Mosher, <u>J. Am. Chem. Soc.</u>, <u>83</u>, 3966 (1961); D. O. Cowan and H. S. Mosher, <u>J. Org. Chem.</u>, <u>27</u>, 1 (1962).
- ⁶ H. O. House, D. D. Traficonte and R. A. Evans, <u>J. Org. Chem.</u>, <u>28</u>, 343, 355 (1963).
- 7 The extension of measured apparent molecular weights, really a measure of total concentration of species in solution, to the structure of organomagnesium solutions is difficult, and the term "monomeric" refers to a solution giving rise to one particle per R, Mg, X combination thus RMgX and R₂ Mg + MgX₂ are indistinguishable. Dimeric refers to a situation giving 1/2 particle per R, Mg, X combination. Thus R₂ Mg·MgX₂ and (RMgX)₂ are indistinguishable.
- ⁸ A. D. Vreugdenhil and C. Blomberg, <u>Rec. trav. chim. des</u> <u>Pay-Bas</u>, <u>82</u>, 454, 461 (1963).
- 9 E. C. Ashby and W. E. Becker, J. Am. Chem. Soc., <u>35</u>, 118 (1963); E. C. Ashby, personal communication.

¹⁰ R. E. Rundle, <u>J. Am. Chem. Soc.</u>, <u>85</u>, 1003 (1963).

Constitution of the Grignard reagent

1371

Although such evidence is not transferable to solution, they do add weight to an argument calling for a Schlenk equilibrium:

Evidence for RMgX in the crystalline phase studies and the tracer work, showing no RMgX equilibrium member are the only <u>direct</u> conflicts. However, more deep seated problems are involved, since the solubility of MgX₂ in ethers may preclude a near zero value for the equilibrium constant of (1) as the cause of 'monomeric' molecular weights suggesting that "monomeric" molecular weights and RMgX content are often related.

At present the occurrence of RHgX units has only been "proven" in THF solution. In ether the "monomeric" form $(R_2 Mg + MgX_2 \text{ or } 2RMgX)$ is in evidence at low concentrations, normally below the solubility limit of MgX_2. At higher concentrations association $(R_2 Mg \cdot MgX_2 \text{ or perhaps } (RMgX)_2)$ is observed. Yet kinetic results in THF show distinct differences in reactivity of the first and second R group, as do ether ¹¹ reactions, facts which are cited above.

Since the basic evidence for $R_2 Mg \cdot Mg \cdot Mg X_2$ formulation is the exchange work, kinetic and mechanistic data being more subject to preconceived structural beliefs, the report in the early exchange work of a single experiment which yielded complete exchange, suggestive of RMgX, or an ionic or non-ionic pathway for exchange, assumed greater importance.

¹¹ R. E. Dessy and R. M. Salinger, <u>J. Am. Chem. Soc.</u>, <u>83</u>, 3530 (1961).

Constitution of the Grignard reagent

No.21

This single experiment involved Mg ²⁵ as a tracer instead of the Mg ²⁸ used in the other experiments, and the exchange was attributed to impurities in the Mg ²⁵ sample not present in the Mg ²⁸ sources.

Repetition of the Mg 28 exchange studies, under a number of conditions has led to the compilation of the data in Table I which includes all runs made from 1956 to date. Except for the variations noted all runs were made in what appears to be the same manner. Both no exchange results and statistical exchange results have been found in two systems. There appears to be no direct correlation except the fact that the earlier la, 1b no-exchange results correlate with the employment of a specific Mg source, Dow Atomized Shot. The entire series of recent runs employing other sources of magnesium show statistical exchange. Since Dow Shot is intermediate : n purity between triply-sublimed material and commercial curnings, and negative catalysis of exchange is unpalatable, it would appear sounder to seek other sources for the dichotomy. However, inhibition of an exchange catalyst by trace impurities is not an impossibility. Perhaps the answer lies in R, Mg/MgBr, ratios, sequence of addition, or alkoxide content. No obvious relationship between separation method, or method of preparation of MgBr2 and the variable results appears evident. χ -Ray spectroscopy has confirmed the isotope employed.

In view of the large number of variables other investigations will have to suggest key experiments.

1372

Specifically, one is faced with the problem of whether the statistical exchange data above result from RMgX intermediates, or equilibrium members, or are the result of nonionic or ionic pathways for exchange; alternatively, one might consider whether R₂ Mg + MgX₂ - always yields the same species as RX + Mg. Since the evidence cited above 2 , as well as kinetic data provided by Becker $^{\boldsymbol{3}}$, and unpublished observations by Mosher indicate that the two pathways can lead to the same species, an explanation for no-exchange/ statistical exchange could be in the fact that the two pathways do not always lead to the same species. In more general terms it is still difficult to reconcile the findings of Mosher ⁵ and House ⁶ in ether solvent with other than a R, Mg, MgX, system at present. In THF there may be some merit in considering the suggestion of Anteunis * that utilization of only one-half the available R groups might be associated with a product organomagnesium complex which effectively removes one available R-L unit per R-L unit that reacts.

TABLE I

No.21

	$R_2 Mg + Mg^* Br_2 \approx$								
R ₂ Me	5	Method of Prep. ¹	Mg [*] Br ₂ Mg Source ²	MgBr ₂ Prep. ³	Sol- vent	Separation Reagent ⁴	No. Runs	Result	
Et, I	Mg	A	В	A	Et, O	Dioxane	3	No Exc.	
Et, I	Mg	A	B+C	A	Et, 0	Dioxane	1	No Exc.	
Et, I	Mg	A	В	A	Et ₂ 0	Electrolysis	1	No Exc.	
Et ₂ 1	Mg	A	C	A .	Et ₂ 0	Dioxane and Electrolysis	1	Stat.Exc. (Mg ²⁵)	
Et, l	Mg	A	A	A	Et2 0	Dioxane	1	Stat.Exc.	
Et, I	Mg	A	A	В	Et ₂ O	Dioxane	1	Stat.Exc.	
Et ₂ l	Mg	A	A	в	THF	Bipyridyl	1	Stat.Exc.	
Me ₂ 1	Mg	В	A	В	THF	Bipyridyl	1	Stat.Exc.	
Me ₂ 1	Mg	В	A	A	Et ₂ 0	Dioxane	1	Stat.Exc.	
Me ₂ 1	Mg	В	A	A	Et ₂ 0	Bipyridyl	1	Stat.Exc.	
ØMg		A	в	A	Et ₂ O	Dioxane	1	No Exc.	
ני י	R ₂) or	4g was] (B) R ₂]	prepared Hg →	by eith	ner me	ethod (A) "RMg	gX" Di	ther	
² The Mg used as carrier was (A) Dow Triply Sublimed, (B) Dow Atomized Shot, or (C) Grignard Grade Turnings, a typical analysis of which is:									
	tyj	oical a	halysis (or (C)) Grią 1 is:	nard Grade T	urning	35, A	
	tyj	oical a	nalysis (M	, or (C) of which ax. Impu) Grig n is: uriti(gnard Grade Tu es in ppm	irning	35, a	
	tyj	pical a	nalysis (M	, or (C) of which ax. Impu A) Grig n is: uriti(B	gnard Grade Tu es in ppm C	urning	ζ ε, Α	
	tyı	pical a	alysis (M	, or (C) of which ax. Impu A L <39) Grig n is: uriti(B <]	gnard Grade Tu es in ppm C 39 < 39	ırning	35, A	
	tyı	pical a	alysis A	, or (C) of which ax. Impu A L <39 u 4) Grig n is: nriti(B <	gnard Grade Tr es in ppm C 39 < 39 16 25	ırninı	38, a	
·	tyı	pical a	Alysis (Alysis (Al	, or (C) of which ax. Impu A L <39 L <39 L 4 C 4) Grig n is: uriti(B < <	gnard Grade Tr es in ppm C 39 < 39 16 25 4 < 4	ırninı	36, a	
	tyı	bical a	Alysis Alysis Al Ci Ci Ci	, or (C, of which ax. Impu A L <39 A C < 4 c < 4 c < 4) Grig n is: uritio S < 3	nard Grade Tr ss in ppm C 39 < 39 16 25 4 < 4 10 310	urnin;	36, A	
	tyı	pical a	Alysis (Alysis (Al Ci Ci F Mi	, or (C) of which ax. Impu A < 39 = 4 = 41 a < 4) Grig n is: uritio S < 3	nard Grade Tr c 39 < 39 16 25 4 < 4 10 310 70 310	urnin;	36, A	
	tyj	pical a	Alysis Alysis A C C F M N	, or (C, of which ax. Impl A C 4 C 4 C 4 C 4 C 4 C 4 C 4 C 4 C 4 C 4) Grig n is: uriti S < 3 3 4	gnard Grade Tr c 39 < 39 16 25 4 < 4 10 310 70 310 20 < 20	ırninş	35, A	
	tyj	pical a	Alysis Al C F M M S S	, or (C, of which ax. Impl A < 39 < 4 < 41 < 41 < 41 < 41 < 41 < 39 < 41 < 39 < 41 < 39 < 41 < 39 < 41 < 39 < 39 < 41 < 39 < 39 < 42 < 39 < 39 < 42 < 39 < 39 < 39 < 39 < 39 < 39 < 42 < 39 < 39 < 42 < 39 < 39 < 42 < 39 < 39 < 42 < 39 < 39 < 39 < 39 < 42 < 39 < 39 < 42 < 39 < 39 < 39 < 42 < 42 < 39 < 39 < 39 < 39 < 39 < 39 < 39 < 39 < 39 < 41 < 32 < 39 < 31 < 32 < 32 < 33 < 33) Grig n is: nriti(8 < 3 < 3 	gnard Grade Tr c 39 < 39 16 25 4 < 4 10 310 70 310 20 < 20 73 < 73	urninį	35, A	

It is to be noted that sublimation of the carrier is normally involved as part of the labeling process. In one no exchange experiment this labeled sublimate was mixed with commercial turnings before preparation of MgBr₂.

³ MgBr₂ was produced by (A) Mg + Br₂ Et_2O , or (B) C₂ H, Br₂ Mg

The separation reagent is that used to separate R₂ Mg from MgBr₂ or to isolate a unique Mg species from solution.